Etudes, mesures et budgets

Marketeurs : le Big Data et le prédictif pour tous !

...Ou comment l'entreprise doit se mettre dans une configuration data driven, donc s'organise et s'équipe d'outils pour collecter, centraliser et exploiter la donnée

…Ou comment l’entreprise doit se mettre dans une configuration data driven, donc s’organise et s’équipe d’outils pour collecter, centraliser et exploiter la donnée

Le Big data et le prédictif ne sont pas réservés aux GAFA et aux entreprises du CAC 40. Les solutions d’IA permettent à toutes les entreprises d’exploiter la donnée. Des outils devenus indispensables aux directions marketing et commerciales pour identifier les leads, repérer les opportunités, personnaliser les offres, anticiper la consommation, le churn ou optimiser leurs campagnes.

Si 90% des entreprises françaises sont conscientes de l’importance de la donnée pour produire mieux, plus vite et de façon optimale, seules 48% ont recours au Big Data et 9% aux outils prédictifs (étude d’IDC, 2018). Pourtant les directions métiers et notamment les directions marketing et commerciales réclament l’intégration de ces technologies dans leur process pour identifier les leads, repérer les opportunités, personnaliser les offres, anticiper la consommation, le churn, optimiser le cross ou le up-selling. Alors, si ces outils sont tant attendus par les métiers, pourquoi sont-ils si peu déployés dans les entreprises – notamment les ETI et PME ? La raison est simple : toutes ces entreprises considèrent que leur déploiement est réservé aux GAFA et aux entreprises du CAC 40. Elles n’osent franchir le pas estimant qu’elles n’en n’ont ni les compétences, ni les moyens financiers. Mais c’est une erreur. Faire du marketing 3.0 est aujourd’hui à la portée de toutes les structures. Il faut pour cela que l’entreprise se mette dans une configuration data driven c’est-à-dire s’organise et s’équipe d’outils pour collecter, centraliser et exploiter la donnée.

Déployer une organisation inclusive et pluridisciplinaire de la donnée

J'ai un job dans la com', par Serge-Henri Saint-Michel

La première étape de la mise en œuvre d’une stratégie data driven consiste à récupérer les données issues de nombreuses sources internes (sites internet, mobile, réseaux sociaux, bases de données, tableaux excel, ERP, CRM..) et externes à l’entreprise (open data, partenaires, fournisseurs, études, sondages, etc) et à casser les silos pour mettre en œuvre une organisation inclusive et pluridisciplinaire de la donnée. Ainsi, qu’ils soient dans le service marketing, commercial, IT, digital, qu’ils soient data scientists, data analysts ou côté métiers, tous les profils doivent collaborer.

Grégory Herbert, VP Continental Europe, Dataiku

Grégory Herbert, VP Continental Europe, Dataiku

Les data analysts et data scientists enrichissent la donnée grâce aux algorithmes, les métiers en dégagent de l’information utile à leurs missions. Grâce au Big Data, au machine learning et à l’IA, les professionnels de la donnée peuvent analyser les signaux comportementaux laissés par les consommateurs, éléments permettant aux métiers de déployer différentes stratégies marketing et commerciales.

Ainsi, des données collectées sur les problématiques des consommateurs exposées au service clients, la typologie des clients, les recherches d’informations sur des produits ou des services sur le site internet associées à des data issues de l’extérieur de l’entreprise (offres concurrentes, études comportementales saisonnalité, météo…) délivrent aux métiers des éléments leur permettant d’anticiper un churn, ou de cibler des potentiels clients avec des offres adaptées.

La donnée : l’affaire de tous

Si de prime abord, les ETI et PME peuvent être intimidées par tout le bouleversement imposé par une stratégie data driven, qu’elles se rassurent. Aujourd’hui, des outils de data science préconfigurés permettent aux métiers de travailler sur de grands volumes de données issus de sources variées, et d’en déduire des informations exploitables dans leurs missions. Simples de déploiement et d’utilisation, ces outils leur permettent de se familiariser avec la donnée et d’identifier des cas d’usage, puis d’industrialiser et d’opérationnaliser les process d’entreprise grâce aux plateformes d’enterprise AI.

Considérée jusqu’à récemment comme une discipline réservée aux experts, la data science se démocratise avec l’arrivée de plateformes centralisatrices de données structurées et non structurées et intégrant des algorithmes de machine learning et d’IA.

Adoptez un livre

Aujourd’hui, toutes les entreprises peuvent devenir data driven dès lors qu’elles font tomber les silos et qu’elles incitent chaque collaborateur à partager et à utiliser les données. A l’instar de Mr Jourdain et de sa prose, les collaborateurs peuvent désormais faire de l’analytics sans le savoir !

Auteur : Grégory Herbert, VP Continental Europe, Dataiku

***

(c) Ill. Pixabay

1111 Citations de Stratégie, Marketing, Communication, par Serge-Henri Saint-Michel
Cliquez pour commenter

Commenter

Votre adresse e-mail ne sera pas publiée. Les champs obligatoires sont indiqués avec *

Ce site utilise Akismet pour réduire les indésirables. En savoir plus sur comment les données de vos commentaires sont utilisées.

Marketing PME aide les PME PMI et TPE à développer leur business en 2021
1111 Citations de stratégie, marketing et communication, par Serge-Henri Saint-Michel
Vers le haut